Scaling symmetries
Scaling symmetries of a (parametric) polynomial system are the maps that act by scaling individual variables of the formulation.
Computing scaling symmetries
DecomposingPolynomialSystems.scaling_symmetries — Functionscaling_symmetries(F::System)Given a polynomial system F returns the group of scaling symmetries of F. The scalings that change the parameters are considered as well.
julia> @var x y a b c;
julia> F = System([x^4+a^2+1, y^2+b+c]; variables=[x, y], parameters=[a,b,c]);
julia> scaling_symmetries(F)
ScalingGroup isomorphic to ℤ × ℤ₄ × ℤ₂
1 free scaling:
y ↦ y*λ, b ↦ b*λ^2, c ↦ c*λ^2
modular scalings:
1 of order 4:
x ↦ -im*x, y ↦ im*y, b ↦ -b, c ↦ -c
1 of order 2:
x ↦ -x, y ↦ -y, a ↦ -aScalingGroup
DecomposingPolynomialSystems.ScalingGroup — TypeScalingGroupA ScalingGroup is the result of the scaling_symmetries computation.